If it's not what You are looking for type in the equation solver your own equation and let us solve it.
24-14x+x^2=0
a = 1; b = -14; c = +24;
Δ = b2-4ac
Δ = -142-4·1·24
Δ = 100
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{100}=10$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-14)-10}{2*1}=\frac{4}{2} =2 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-14)+10}{2*1}=\frac{24}{2} =12 $
| -2v-5=17 | | 6x+18-6=3x+(9+3x) | | 2y+4-y=8 | | 7+5m–2m=10 | | -1/5(125-55x)=55 | | -12-6y=8 | | 2p-0.2=p+0.3 | | 3(3x+9)–2x=4x | | 3x+5x+x=27 | | 6(x+3)−6=3x+3(3+x) | | 3(x+4)+12=9 | | 12k+k−11k=8 | | −2x+5=7x−4 | | 6(5g+7)=30g | | 4n+2=34 | | -35=-3x+8=5x | | 0.4x−3.5=0.1 | | 5y+y=-18 | | (1.75/3)=(x/10) | | -2m-m=-6 | | √2z;z=18 | | 4/x+3=6/15 | | -5w=8w=9 | | 7=z/8.4 | | x^2−9x+5=0 | | (2x^2-x)/3=x(x-2) | | −2(5t−4)+8t=5t−7 | | 10=p/15+9 | | 5n+50=180 | | 6y-4=-3y | | 8w+5={2w+1} | | 6(3x=5)-7x=25 |